3.161 \(\int \frac{(2+3 x^2) (3+5 x^2+x^4)^{3/2}}{x^5} \, dx\)

Optimal. Leaf size=127 \[ -\frac{\left (2-3 x^2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{4 x^4}-\frac{3 \left (28-19 x^2\right ) \sqrt{x^4+5 x^2+3}}{8 x^2}+\frac{453}{16} \tanh ^{-1}\left (\frac{2 x^2+5}{2 \sqrt{x^4+5 x^2+3}}\right )-\frac{127}{8} \sqrt{3} \tanh ^{-1}\left (\frac{5 x^2+6}{2 \sqrt{3} \sqrt{x^4+5 x^2+3}}\right ) \]

[Out]

(-3*(28 - 19*x^2)*Sqrt[3 + 5*x^2 + x^4])/(8*x^2) - ((2 - 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/(4*x^4) + (453*ArcTan
h[(5 + 2*x^2)/(2*Sqrt[3 + 5*x^2 + x^4])])/16 - (127*Sqrt[3]*ArcTanh[(6 + 5*x^2)/(2*Sqrt[3]*Sqrt[3 + 5*x^2 + x^
4])])/8

________________________________________________________________________________________

Rubi [A]  time = 0.108955, antiderivative size = 127, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {1251, 812, 843, 621, 206, 724} \[ -\frac{\left (2-3 x^2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{4 x^4}-\frac{3 \left (28-19 x^2\right ) \sqrt{x^4+5 x^2+3}}{8 x^2}+\frac{453}{16} \tanh ^{-1}\left (\frac{2 x^2+5}{2 \sqrt{x^4+5 x^2+3}}\right )-\frac{127}{8} \sqrt{3} \tanh ^{-1}\left (\frac{5 x^2+6}{2 \sqrt{3} \sqrt{x^4+5 x^2+3}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/x^5,x]

[Out]

(-3*(28 - 19*x^2)*Sqrt[3 + 5*x^2 + x^4])/(8*x^2) - ((2 - 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/(4*x^4) + (453*ArcTan
h[(5 + 2*x^2)/(2*Sqrt[3 + 5*x^2 + x^4])])/16 - (127*Sqrt[3]*ArcTanh[(6 + 5*x^2)/(2*Sqrt[3]*Sqrt[3 + 5*x^2 + x^
4])])/8

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 812

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*(a + b*x + c*x^2)^p)/(e^2*(m + 1)*(m
+ 2*p + 2)), x] + Dist[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p - 1)*Simp[g*(
b*d + 2*a*e + 2*a*e*m + 2*b*d*p) - f*b*e*(m + 2*p + 2) + (g*(2*c*d + b*e + b*e*m + 4*c*d*p) - 2*c*e*f*(m + 2*p
 + 2))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
  !ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\left (2+3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{x^5} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{(2+3 x) \left (3+5 x+x^2\right )^{3/2}}{x^3} \, dx,x,x^2\right )\\ &=-\frac{\left (2-3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{4 x^4}-\frac{3}{16} \operatorname{Subst}\left (\int \frac{(-56-38 x) \sqrt{3+5 x+x^2}}{x^2} \, dx,x,x^2\right )\\ &=-\frac{3 \left (28-19 x^2\right ) \sqrt{3+5 x^2+x^4}}{8 x^2}-\frac{\left (2-3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{4 x^4}+\frac{3}{32} \operatorname{Subst}\left (\int \frac{508+302 x}{x \sqrt{3+5 x+x^2}} \, dx,x,x^2\right )\\ &=-\frac{3 \left (28-19 x^2\right ) \sqrt{3+5 x^2+x^4}}{8 x^2}-\frac{\left (2-3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{4 x^4}+\frac{453}{16} \operatorname{Subst}\left (\int \frac{1}{\sqrt{3+5 x+x^2}} \, dx,x,x^2\right )+\frac{381}{8} \operatorname{Subst}\left (\int \frac{1}{x \sqrt{3+5 x+x^2}} \, dx,x,x^2\right )\\ &=-\frac{3 \left (28-19 x^2\right ) \sqrt{3+5 x^2+x^4}}{8 x^2}-\frac{\left (2-3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{4 x^4}+\frac{453}{8} \operatorname{Subst}\left (\int \frac{1}{4-x^2} \, dx,x,\frac{5+2 x^2}{\sqrt{3+5 x^2+x^4}}\right )-\frac{381}{4} \operatorname{Subst}\left (\int \frac{1}{12-x^2} \, dx,x,\frac{6+5 x^2}{\sqrt{3+5 x^2+x^4}}\right )\\ &=-\frac{3 \left (28-19 x^2\right ) \sqrt{3+5 x^2+x^4}}{8 x^2}-\frac{\left (2-3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{4 x^4}+\frac{453}{16} \tanh ^{-1}\left (\frac{5+2 x^2}{2 \sqrt{3+5 x^2+x^4}}\right )-\frac{127}{8} \sqrt{3} \tanh ^{-1}\left (\frac{6+5 x^2}{2 \sqrt{3} \sqrt{3+5 x^2+x^4}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0650273, size = 107, normalized size = 0.84 \[ \frac{1}{16} \left (\frac{2 \sqrt{x^4+5 x^2+3} \left (6 x^6+83 x^4-86 x^2-12\right )}{x^4}+453 \tanh ^{-1}\left (\frac{2 x^2+5}{2 \sqrt{x^4+5 x^2+3}}\right )-254 \sqrt{3} \tanh ^{-1}\left (\frac{5 x^2+6}{2 \sqrt{3} \sqrt{x^4+5 x^2+3}}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[((2 + 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/x^5,x]

[Out]

((2*Sqrt[3 + 5*x^2 + x^4]*(-12 - 86*x^2 + 83*x^4 + 6*x^6))/x^4 + 453*ArcTanh[(5 + 2*x^2)/(2*Sqrt[3 + 5*x^2 + x
^4])] - 254*Sqrt[3]*ArcTanh[(6 + 5*x^2)/(2*Sqrt[3]*Sqrt[3 + 5*x^2 + x^4])])/16

________________________________________________________________________________________

Maple [A]  time = 0.017, size = 117, normalized size = 0.9 \begin{align*}{\frac{83}{8}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+{\frac{453}{16}\ln \left ({\frac{5}{2}}+{x}^{2}+\sqrt{{x}^{4}+5\,{x}^{2}+3} \right ) }-{\frac{43}{4\,{x}^{2}}\sqrt{{x}^{4}+5\,{x}^{2}+3}}-{\frac{127\,\sqrt{3}}{8}{\it Artanh} \left ({\frac{ \left ( 5\,{x}^{2}+6 \right ) \sqrt{3}}{6}{\frac{1}{\sqrt{{x}^{4}+5\,{x}^{2}+3}}}} \right ) }-{\frac{3}{2\,{x}^{4}}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+{\frac{3\,{x}^{2}}{4}\sqrt{{x}^{4}+5\,{x}^{2}+3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^5,x)

[Out]

83/8*(x^4+5*x^2+3)^(1/2)+453/16*ln(5/2+x^2+(x^4+5*x^2+3)^(1/2))-43/4*(x^4+5*x^2+3)^(1/2)/x^2-127/8*arctanh(1/6
*(5*x^2+6)*3^(1/2)/(x^4+5*x^2+3)^(1/2))*3^(1/2)-3/2*(x^4+5*x^2+3)^(1/2)/x^4+3/4*x^2*(x^4+5*x^2+3)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.48336, size = 185, normalized size = 1.46 \begin{align*} \frac{7}{2} \, \sqrt{x^{4} + 5 \, x^{2} + 3} x^{2} + \frac{1}{6} \,{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}} - \frac{127}{8} \, \sqrt{3} \log \left (\frac{2 \, \sqrt{3} \sqrt{x^{4} + 5 \, x^{2} + 3}}{x^{2}} + \frac{6}{x^{2}} + 5\right ) + \frac{197}{8} \, \sqrt{x^{4} + 5 \, x^{2} + 3} - \frac{23 \,{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}}}{12 \, x^{2}} - \frac{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{5}{2}}}{6 \, x^{4}} + \frac{453}{16} \, \log \left (2 \, x^{2} + 2 \, \sqrt{x^{4} + 5 \, x^{2} + 3} + 5\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^5,x, algorithm="maxima")

[Out]

7/2*sqrt(x^4 + 5*x^2 + 3)*x^2 + 1/6*(x^4 + 5*x^2 + 3)^(3/2) - 127/8*sqrt(3)*log(2*sqrt(3)*sqrt(x^4 + 5*x^2 + 3
)/x^2 + 6/x^2 + 5) + 197/8*sqrt(x^4 + 5*x^2 + 3) - 23/12*(x^4 + 5*x^2 + 3)^(3/2)/x^2 - 1/6*(x^4 + 5*x^2 + 3)^(
5/2)/x^4 + 453/16*log(2*x^2 + 2*sqrt(x^4 + 5*x^2 + 3) + 5)

________________________________________________________________________________________

Fricas [A]  time = 1.37994, size = 320, normalized size = 2.52 \begin{align*} \frac{1016 \, \sqrt{3} x^{4} \log \left (\frac{25 \, x^{2} - 2 \, \sqrt{3}{\left (5 \, x^{2} + 6\right )} - 2 \, \sqrt{x^{4} + 5 \, x^{2} + 3}{\left (5 \, \sqrt{3} - 6\right )} + 30}{x^{2}}\right ) - 1812 \, x^{4} \log \left (-2 \, x^{2} + 2 \, \sqrt{x^{4} + 5 \, x^{2} + 3} - 5\right ) + 67 \, x^{4} + 8 \,{\left (6 \, x^{6} + 83 \, x^{4} - 86 \, x^{2} - 12\right )} \sqrt{x^{4} + 5 \, x^{2} + 3}}{64 \, x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^5,x, algorithm="fricas")

[Out]

1/64*(1016*sqrt(3)*x^4*log((25*x^2 - 2*sqrt(3)*(5*x^2 + 6) - 2*sqrt(x^4 + 5*x^2 + 3)*(5*sqrt(3) - 6) + 30)/x^2
) - 1812*x^4*log(-2*x^2 + 2*sqrt(x^4 + 5*x^2 + 3) - 5) + 67*x^4 + 8*(6*x^6 + 83*x^4 - 86*x^2 - 12)*sqrt(x^4 +
5*x^2 + 3))/x^4

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (3 x^{2} + 2\right ) \left (x^{4} + 5 x^{2} + 3\right )^{\frac{3}{2}}}{x^{5}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2+2)*(x**4+5*x**2+3)**(3/2)/x**5,x)

[Out]

Integral((3*x**2 + 2)*(x**4 + 5*x**2 + 3)**(3/2)/x**5, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}}{\left (3 \, x^{2} + 2\right )}}{x^{5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^5,x, algorithm="giac")

[Out]

integrate((x^4 + 5*x^2 + 3)^(3/2)*(3*x^2 + 2)/x^5, x)